GCSE Maths Geometry and Measure Area

How To Work Out Area

How To Work Out Area

Here we will learn how to work out area.

There are also how to work out area worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What is area?

Area is a measure of how much space there is inside of a 2 2 dimensional shape. To find the area of a shape we can either count the number of unit squares within the shape or use the appropriate area formula for that shape.

Area is measured in square units e.g. cm2,  m2,  mm2 cm^{2}, \; m^{2}, \; mm^{2} .

The table below shows the formulae for calculating area for some of the most common 2 2 D shapes:

how to work out area image 1

What is area?

What is area?

How to work out area

In order to work out area:

  1. Write down the formula.
  2. Substitute the values into the formula.
  3. Do the calculation.
  4. Write the answer, including the units.

How to work out area

How to work out area

How to work out area worksheet

How to work out area worksheet

How to work out area worksheet

Get your free how to work out area worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE
x
How to work out area worksheet

How to work out area worksheet

How to work out area worksheet

Get your free how to work out area worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE

Related lessons on area

How to work out area is part of our series of lessons to support revision on area. You may find it helpful to start with the main area lesson for a summary of what to expect, or use the step by step guides below for further detail on individual topics. Other lessons in this series include:

How to work out area examples

Example 1: area of a rectangle

Work out the area of the rectangle

How to Work Out Area Example 1

  1. Write down the formula.

Area =base×height \text{Area }= base \times height

2Substitute the values into the formula.

Here the base is 11cm 11cm and the height is 4cm. 4cm.

Area=11×4 Area=11 \times 4

3Do the calculation.

Area=11×4 Area=11 \times 4

Area=44 Area=44

4Write the answer, including the units.

The measurements are in centimetres so the area will be measured in square centimetres.

Area=44cm2 Area=44cm^2

Example 2: area of a parallelogram

Work out the area of the parallelogram

How to Work Out Area Example 2

Write down the formula.

Show step

Substitute the values into the formula.

Show step

Do the calculation.

Show step

Write the answer, including the units.

Show step

Example 3: area of a rhombus

Calculate the area of the rhombus

How to Work Out Area Example 3

Write down the formula.

Show step

Substitute the values into the formula.

Show step

Do the calculation.

Show step

Write the answer, including the units.

Show step

Example 4: area of a trapezium

Find the area of the trapezium

How to Work Out Area Example 4

Write down the formula.

Show step

Substitute the values into the formula.

Show step

Do the calculation.

Show step

Write the answer, including the units.

Show step

Example 5: area of a triangle

Work out the area of the triangle

How to Work Out Area Example 5

Write down the formula.

Show step

Substitute the values into the formula.

Show step

Do the calculation.

Show step

Write the answer, including the units.

Show step

Example 6: area of a circle

Work out the area of the circle. Give your answer to 1 1 decimal place

How to Work Out Area Example 6

Write down the formula.

Show step

Substitute the values into the formula.

Show step

Do the calculation.

Show step

Write the answer, including the units.

Show step

How to work out area of a compound shape

In order to work out area of a compound shape:

  1. Draw lines to split the shape into two or more smaller shapes. Label the shapes A, B, C, …
  2. Consider each shape individually.
    a)  Work out any measurements that you need.
    b) Calculate the area using the methods above.
  3. Add or subtract the relevant areas to find the total area.
  4. Write the answer, including the units.

Area of a compound shape examples

Example 7: area of a compound shape

Work out the area of the following shape

How to Work Out Area Example 7

Draw lines to split the shape into two or more smaller shapes. Label the shapes A, B, C, …

Show step

Consider each shape individually.

Show step

Add or subtract the relevant areas to find the total area.

Show step

Write the answer, including the units.

Show step

Example 8: area of a compound shape

Work out the shaded area. Give your answer to one decimal place.

How to Work Out Area Example 8

Draw lines to split the shape into two or more smaller shapes. Label the shapes A, B, C, …

Show step

Consider each shape individually.

Show step

Add or subtract the relevant areas to find the total area.

Show step

Write the answer, including the units.

Show step

Common misconceptions

  • Using an incorrect formula

There are several different formulae for the different shapes – make sure you use the correct one.

  • Using the incorrect units/not including units

Area is measured in square units.

E.g.

Square millimetres, square centimetres, square metres, square inches, square feet, square yards etc.

  • Calculating with different units

All measurements must be in the same units before calculating surface area.

E.g.

You can’t have some measurements in cm cm and some in m. m.

  • Calculating perimeter/circumference instead of area

Remember, perimeter is distance around the outside whilst area is the space inside the shape.

  • Using diameter instead of radius for a circle

To work out the area of a circle we need the radius, which is the distance from the centre of the circle to the edge of the circle.

Practice how to work out area questions

1. Work out the area of the square

 

How to Work Out Area Practice Question 1

14cm2 14\mathrm{cm}^{2}
GCSE Quiz False

49cm2 49\mathrm{cm}^{2}
GCSE Quiz True

28cm2 28\mathrm{cm}^{2}
GCSE Quiz False

42cm2 42\mathrm{cm}^{2}
GCSE Quiz False

Since this is a square, the base and height are the same, 7cm. 7cm.

 

Area = base × height=7×7=49cm2 \begin{aligned} \text{Area }&=\text{ base } \times \text{ height}\\\\ &=7 \times 7\\\\ &=49\mathrm{cm}^{2} \end{aligned}

2. Work out the area of the parallelogram

 

How to Work Out Area Practice Question 2

55mm2 55\mathrm{mm}^{2}
GCSE Quiz True

18mm2 18\mathrm{mm}^{2}
GCSE Quiz False

36mm2 36\mathrm{mm}^{2}
GCSE Quiz False

77mm2 77\mathrm{mm}^{2}
GCSE Quiz False

The base is 11mm 11mm and the height is 5mm. 5mm.

 

Area = base × height =11×5=55mm2 \begin{aligned} \text{Area }&=\text{ base } \times \text{ height }\\\\ &=11 \times 5\\\\ &=55\mathrm{mm}^{2} \end{aligned}

3. Calculate the area of the rhombus

 

How to Work Out Area Practice Question 3

260m2 260\mathrm{m}^{2}
GCSE Quiz False

33m2 33\mathrm{m}^{2}
GCSE Quiz False

16.5m2 16.5\mathrm{m}^{2}
GCSE Quiz False

130m2 130\mathrm{m}^{2}
GCSE Quiz True
Area =12× width × height=12×20×13=130m2 \begin{aligned} \text{Area }&=\frac{1}{2} \times \text{ width } \times \text{ height}\\\\ &=\frac{1}{2} \times 20 \times 13\\\\ &=130\mathrm{m}^{2} \end{aligned}

4. Find the area of the trapezium

 

How to Work Out Area Practice Question 4

36cm2 36\mathrm{cm}^{2}
GCSE Quiz False

60cm2 60\mathrm{cm}^{2}
GCSE Quiz True

26cm2 26\mathrm{cm}^{2}
GCSE Quiz False

576cm2 576\mathrm{cm}^{2}
GCSE Quiz False
Area =12(a+b)h=12(8+12)×6=60cm2 \begin{aligned} \text{Area }&=\frac{1}{2}(a+b)h\\\\ &=\frac{1}{2} (8+12) \times 6\\\\ &=60\mathrm{cm}^{2} \end{aligned}

5. Work out the area of the triangle

 

How to Work Out Area Practice Question 5

36mm2 36\mathrm{mm}^{2}
GCSE Quiz False

13mm2 13\mathrm{mm}^{2}
GCSE Quiz False

18mm2 18\mathrm{mm}^{2}
GCSE Quiz True

72mm2 72\mathrm{mm}^{2}
GCSE Quiz False
Area =12× base × height=12×9×4=18mm2 \begin{aligned} \text{Area }&=\frac{1}{2} \times \text{ base } \times \text{ height}\\\\ &=\frac{1}{2} \times 9 \times 4\\\\ &=18\mathrm{mm}^{2} \end{aligned}

6. Calculate the area of the circle. Give your answer to 3sf. 3sf.

 

How to Work Out Area Practice Question 6

69.1m2 69.1\mathrm{m}^{2}
GCSE Quiz False

1520m2 1520\mathrm{m}^{2}
GCSE Quiz False

34.6m2 34.6\mathrm{m}^{2}
GCSE Quiz False

380m2 380\mathrm{m}^{2}
GCSE Quiz True
Area =πr2=π×112=380.132711=380m2 \begin{aligned} \text{Area }&=\pi r^{2}\\\\ &=\pi \times 11^{2}\\\\ &=380.132711\\\\ &=380\mathrm{m}^{2} \end{aligned}

7. Work out the area of the compound shape

 

How to Work Out Area Practice Question 7 Image 1

418cm2 418\mathrm{cm}^{2}
GCSE Quiz True

550cm2 550\mathrm{cm}^{2}
GCSE Quiz False

561cm2 561\mathrm{cm}^{2}
GCSE Quiz False

286cm2 286\mathrm{cm}^{2}
GCSE Quiz False

How to Work Out Area Practice Question 7 Image 2

 

Shape A:

 

Area =12× base × height=12×22×12=132cm2 \begin{aligned} \text{Area }&=\frac{1}{2} \times \text{ base } \times \text{ height}\\\\ &=\frac{1}{2} \times 22 \times 12\\\\ &=132\mathrm{cm}^{2} \end{aligned}

 

Shape B:

 

Area = base ×height=22×13=286cm2 \begin{aligned} \text{Area }&=\text{ base } \times { height}\\\\ &=22 \times 13\\\\ &=286\mathrm{cm}^{2} \end{aligned}

 

Total area: 132+286=418cm2 132+286=418cm^2

How to work out area GCSE questions

1. Work out the area of this shape

 

how to work out area gcse question 1 284x300

 

(3 marks)

Show answer
Area of trapezium: 12(6+14)×8=80cm2 \text{Area of trapezium: }\frac{1}{2}(6+14) \times 8=80\mathrm{cm}^{2}

(1)

Area of triangle: 12×14×11=77cm2 \text{Area of triangle: }\frac{1}{2} \times 14 \times 11 = 77\mathrm{cm}^{2}

(1)

 

Total area: 80+77=157cm2 80 + 77 = 157cm^2

(1)

2. Sean wants to paint both sides of a fence which is 20m 20m long and 1.5m 1.5m high.

 

One tin of the paint that Sean wants to use will cover 15m2 15m^2 . How many tins of paint should Sean buy?

 

(3 marks)

Show answer
Area of one side: 20×1.5=30m2 \text{Area of one side: } 20 \times 1.5 = 30\mathrm{m}^{2}

(1)

Area of both sides: 2×30=60m2 \text{Area of both sides: } 2 \times 30 = 60 \mathrm{m}^{2}

(1)

 

60÷15=4 60 \div 15 = 4 tins

(1)

3. A shop sells pizza in two sizes: 10 10 inches and 13 13 inches. Would Louise get more pizza if she bought one large pizza or two small pizzas? Show how you decide.

 

How to Work Out Area GCSE Question 3

 

(3 marks)

Show answer
Small pizza: Area =π×52=78.54 square inches \text{Small pizza: Area }=\pi \times 5^{2} = 78.54\text{ square inches}

 

Two small pizzas: 2×78.54=157.08 square inches \text{Two small pizzas: } 2\times 78.54=157.08 \text{ square inches}

(1)

 

Large pizza: Area=π×6.52=132.72 square inches \text{Large pizza: Area} = \pi \times 6.5^{2} = 132.72 \text{ square inches}

(1)

 

Two small pizzas

(1)

Learning checklist

You have now learned how to:

  • Work out the area of triangles, quadrilaterals and circles
  • Work out the area of compound shapes

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

GCSE Benefits

Find out more about our GCSE maths tuition programme.